
 

 

  

Abstract—In this paper, application of the first order linear 

stationary iterative methods is extended to solve third order 

composite closed Newton-Cotes quadrature (3-CCNC) system. The 

performances of tested iterative methods for the 3-CCNC system are 

comparatively studied by their application to solve the second kind 

linear Fredholm integral equations. The derivation and 

implementation of the methods are presented. In addition, simulation 

results of three test problems are included to verify the performance 

of the methods. 

 

Keywords—Fredholm integral equations, Newton-Cotes 

quadrature, Stationary iterative method, Dense linear system.   

I. INTRODUCTION 

HE aim of this paper is to compare the performance of the 

first order linear stationary iterative methods for solving 

nonsingular system arising from discretization of the second 

kind linear Fredholm integral equations of the form 

 

( ) ( )( ) ( )− =φ x κφ x f x , [ ],∈x α β                 (1) 

 

Where 

 

( )( ) ( ) ( ),= ∫
β

α
κφ x K x t φ t dt .                      (2) 

 

The function ( ) [ ]2 ,∈f x L α β  is given, 

( ) [ ] [ ]( )2
, , ,∈ ×K x t L α β α β  is the kernel of the integral 

equation and ( )φ x  is the solution to be determined. It is 

assumed that the ( )f x  and ( ),K x t  are continuous and 

problem (1) have a unique solution.  

There is a vast literature on numerical methods for solving 

problem (1), for instance refer [1-10]. The applications of 

numerical methods for problem (1) mostly lead to dense linear 
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system. In this paper, performance of five different first order 

linear stationary iterative methods i.e. Jacobi, backward 

Gauss-Seidel (BGS), forward Gauss-Seidel (FGS), backward 

Successive Over-Relaxation (BSOR) and forward Successive 

Over-Relaxation (FSOR) methods in solving third order 

composite closed Newton-Cotes quadrature (3-CCNC) system 

associated with the numerical solution of problem (1) are 

investigated. 

The rest of this paper is organized as follows. An 

implementation of the 3-CCNC scheme in discretizing 

problem (1) is presented in Section II followed by the 

formulation of the tested first order linear stationary iterative 

methods in Section III. Numerical performance of the tested 

first order linear stationary iterative methods and concluding 

remarks are summarized in Section IV and V respectively.     

II. 3-CCNC SYSTEM 

In this section, an implementation of the 3-CCNC scheme 

for discretizing problem (1) is discussed. Let interval [ ],α β  

be divided uniformly into even N  subintervals and the 

discrete set of points of x  and t  given by = +ix α ih  

( )0,1,2, , 2, 1,= − −Li N N N  and = +jt α jh  

( )0,1, 2, , 2, 1,= − −Lj N N N  respectively, where the constant 

step size, h  is defined as follows 

 

−
=
β α

h
N

.                                   (3) 

 

Before further discussion, the following notations will be used 

for simplicity  
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K K x t

φ φ x

φ φ t

f f x

                            (4) 
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An implementation of the 3-CCNC scheme reduced 

problem (1) to  

 

,

0

∧ ∧

=

− =∑
N

j i j ii j

j

φ w K φ f                            (5) 

 

for 0,1, 2, , 2, 1,= − −Li N N N , where solution 
∧

φ  is an 

approximation of the exact solution φ  to (1) and jw  is the 

weights of 3-CCNC scheme that satisfy the following 

conditions 

 

3
, 0,

8

3
, 3,6,9, , 3

4

9
,

8


=




= = −





Lj

h j N

w h j N

h otherwise

.              (6) 

 

Following the conventional process, (5) can be written as the 

following matrix form 

 

∧

=Aφ f                                     (7) 

 

where ( ) ( ) ( )1 1
,

+ × +
= ∈

N N
i jA a R  is a real nonsingular matrix 

with  

 

,

,
,

1 ,

,

− =
= 

− ≠

j i j

i j
j i j

w K i j
a

w K i j
, 

 

0 1 1

∧ ∧ ∧ ∧ ∧

−

 
=  
 

L

T

N Nφ φ φ φ φ  

 

and  

 

0 1 1−=   L
T

N Nf f f f f . 

III. FIRST ORDER LINEAR STATIONARY ITERATIVE METHODS  

Let  

 

= −A M N                                   (8) 

 

be a splitting of A  that is 
( ) ( )1 1

,
+ × +

∈
N N

M N R  with 

( )det 0≠M . Based on (8), the first order linear stationary 

iterative method for solving linear system (7) has the form 

 

( ) ( )1+∧ ∧

= +

k k

M φ N φ f , 0,1, 2,= Lk               (9) 

 

or equivalently 

 

( ) ( )1+∧ ∧

= +

k k

φ T φ c , 0,1, 2,= Lk                (10) 

 

with 

( )
1

∧
+

∈

k
Nφ R  the k -th approximation to the solution 

∧

φ  

of (7), 1−
=T M N  is called the iteration matrix of the method 

and 1−
=c M f . Let ( )σ T  denote the eigenvalue of matrix T . 

It is well-known that (10) produces a sequence of vectors 

( )∧ 
 
 
  

k

φ , 0,1, 2,= Lk  convergent to the unique solution 
∧

φ  of 

(7) if and only if ( ) 1<ρ T  (where 

( ) ( ){ }max ;= ∈j jρ T λ λ σ T ) for an arbitrary initial datum 

( )0∧

φ . It can be shown that the smaller ( )ρ T  implies faster 

convergence of (10). 

Now, let consider D , −L  and −U  be the diagonal, strictly 

lower triangular and strictly upper triangular parts of A  

respectively. Thus, each stationary iterative method that is 

considered in this paper is based on the splittings of A  as 

follows 

 

i) Jacobi  

=M D , = +N L U   

  

ii) Backward Gauss-Seidel 

= −M D U , =N L  

 

iii) Forward Gauss-Seidel 

= −M D L , =N U  

 

iv) Backward Successive Over-Relaxation 

( )
1

= −M D ωU
ω

, ( )
1

1 = − − N ωL ω D
ω

 

 

v) Forward Successive Over-Relaxation 

( )
1

= −M D ωL
ω

, ( )
1

1 = − − N ωU ω D
ω

 

 

where ω  is a relaxation parameter. As can be seen, unlike the 

Jacobi method, the BGS, FGS, BSOR and FSOR methods 

depends on the ordering of the unknowns. FGS and FSOR 

methods begins the update of 
∧

φ  with the first component, 

whereas for BGS and BSOR methods with the last component. 

The performance of the BSOR and FSOR methods can be very 
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often drastically improved with the proper choice of the 

relaxation parameter, ω . It is noted that when 1=ω , BSOR 

and FSOR methods become the expression of BGS and FGS 

methods respectively. 

By determining values of D , −L  and −U , iterative 

methods of Jacobi, BGS, FGS, BSOR and FSOR can be 

applied directly to solve linear system (7), which lead to 

 

i) Jacobi expression: 

( ) ( ) ( )1 1

, ,
, 0 1

1
+ −∧ ∧ ∧

= = +

 
 = − −
 
 
∑ ∑

k k ki N

i i j i ji j j
i i j j i

φ f a φ a φ
a

 

 

ii) BGS expression: 

( ) ( ) ( )1 11

, ,
, 0 1

1
+ +−∧ ∧ ∧

= = +

 
 = − −
 
 
∑ ∑

k k ki N

i i j i ji j j
i i j j i

φ f a φ a φ
a

 

 

iii) FGS expression: 

( ) ( ) ( )1 11

, ,
, 0 1

1
+ +−∧ ∧ ∧

= = +

 
 = − −
 
 
∑ ∑

k k ki N

i i j i ji j j
i i j j i

φ f a φ a φ
a

 

 

iv) BSOR expression: 

( )

( )
( ) ( ) ( )1 11

, ,
, 0 1

1

+ +−∧ ∧ ∧ ∧

= = +

 
 = − + − −
 
 
∑ ∑

k k k ki N

i i j i ji i j j
i i j j i

ω
φ ω φ f a φ a φ

a
  

 

iv) FSOR expression: 

( )

( )
( ) ( ) ( )1 11

, ,
, 0 1

1

+ +−∧ ∧ ∧ ∧

= = +

 
 = − + − −
 
 
∑ ∑

k k k ki N

i i j i ji i j j
i i j j i

ω
φ ω φ f a φ a φ

a
 

 

for 0,1, 2, , 2, 1,= − −Li N N N . The tested first order linear 

stationary iterative methods are performed by using all 

equations until the solution satisfied a specified convergence 

criterion i.e. maximum iteration error norm, 

( ) ( )1+∧ ∧

∞

− ≤

k k

φ φ ε  where ε  is the convergence criterion.    

IV. SIMULATION RESULTS AND ANALYSIS  

To study the performance of the methods, the following three 

second kind linear Fredholm integral equations which will 

generate nonsingular matrix A  by using 3-CCNC scheme 

were used as the test problems. 

 

Test Problem 1 [11] 

 

( ) ( ) ( )
1

2

0
4− − =∫φ x x t x φ t dt x , [ ]0,1∈x  

 

and the exact solution is given by 

 

( ) 224 9= −φ x x x . 

 

Test Problem 2 [7] 

 

( ) ( ) ( )
1

2 2 6 3

0
5 10− + = − + +∫φ x x t φ t dt x x x , [ ]0,1∈x  

 

with the exact solution  

 

( ) 6 3 21045 2141
5

28 84
= − + + +φ x x x x x . 

 

Test Problem 3 [9] 

 

( ) ( ) ( )2

0

1
sin

2 2

 
− = − 

 ∫
π

x
φ x xt φ t dt x , 0,

2

 
∈  
 

π
x  

 

and the exact solution is of the form 

 

( ) ( )sin=φ x x . 

 

For the numerical simulations, the following criteria are 

considered to make a comparative analysis 

 

k  Number of iterations 

CPU  CPU time (in seconds) when the converged 

solution is obtained 

RMSE  Root mean squared error [2] 

 

The value of initial datum, 

( )0∧

φ  is set to be zero for all the test 

problems and experimental values of ω  for BSOR and FSOR 

methods are chosen within 0.01±  to be an optimal value by a 

trial and error process. It was found that when the N  is taken 

the same, CPU time required for each iteration step is the same 

for the Jacobi, BGS, FGS, BSOR and FSOR iterative methods. 

Thus, the ratio of iterations between two iterative methods 

equals to the ratio of CPU times. In view of this, the CPU time 

of BGS, FGS, BSOR and FSOR methods are computed 

directly from the CPU time of Jacobi method and the ratio of 

iterations. All simulations described in this paper are 

performed using C programming language on a PC with 

Intel(R) Core(TM) 2 (1.66Hz, 1.67Hz) and 1022MB RAM. 

Throughout the simulations, the convergence test considered 
1210−

=ε  and carried out on several different N . The 

simulation results of the tested iterative methods for test 

problems 1 to 3 are recorded in Tables 1 to 3. Meanwhile, 

convergence histories of the iterative methods are plotted in 

Figures 1 to 3.    
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Table 1. Numerical results for test problem 1 

 

N  Methods k  CPU  RMSE  

120 

Jacobi 

BGS 

FGS 

BSOR 

 

FSOR 

 

446 

234 

229 

51 

(ω =1.56) 

48 

(ω =1.54) 

0.83 

0.44 

0.43 

0.09 

 

0.09 

 

1.0463× 10
-11 

4.8017× 10
-12 

5.1177× 10
-12 

1.4177× 10
-13 

 

1.1781× 10
-13

 

 

240 

Jacobi 

BGS 

FGS 

BSOR 

 

FSOR 

 

450 

236 

231 

51 

(ω =1.56) 

48 

(ω =1.54) 

3.11 

1.63 

1.60 

0.35 

 

0.33 

 

1.0250× 10
-11 

4.7567× 10
-12 

5.0696× 10
-12 

1.5936× 10
-13 

 

3.2299× 10
-13 

 

480 

Jacobi 

BGS 

FGS 

BSOR 

 

FSOR 

 

452 

237 

232 

51 

(ω =1.56) 

48 

(ω =1.54) 

6.72 

3.52 

3.45 

0.76 

 

0.71 

 

1.0151× 10
-11 

4.7364× 10
-12 

5.0485× 10
-12 

1.9492× 10
-13 

 

5.2596× 10
-13 

 

960 

Jacobi 

BGS 

FGS 

BSOR 

 

FSOR 

 

453 

238 

232 

52 

(ω =1.56) 

48 

(ω =1.54) 

26.89 

14.13 

13.77 

3.09 

 

2.85 

 

1.0105× 10
-11 

4.4523× 10
-12 

5.3554× 10
-12 

1.6052× 10
-13 

 

6.6403× 10
-13 

 

1920 

Jacobi 

BGS 

FGS 

BSOR 

 

FSOR 

 

453 

238 

233 

52 

(ω =1.56) 

49 

(ω =1.55) 

95.57 

50.21 

49.16 

10.97 

 

10.34 

 

1.0393× 10
-11 

4.5836× 10
-12 

4.8834× 10
-12 

1.6493× 10
-13 

 

5.0660× 10
-14 

 

3840 

Jacobi 

BGS 

FGS 

BSOR 

 

FSOR 

 

454 

238 

233 

52 

(ω =1.56) 

49 

(ω =1.55) 

379.83 

199.12 

194.93 

43.50 

 

40.99 

 

9.9180× 10
-12 

4.6486× 10
-12 

4.9567× 10
-12 

1.6401× 10
-13 

 

4.9942× 10
-14 

 

7680 

Jacobi 

BGS 

FGS 

BSOR 

 

FSOR 

 

455 

239 

234 

52 

(ω =1.56) 

49 

(ω =1.55) 

1550.58 

814.48 

797.44 

177.21 

 

166.99 

 

9.3994× 10
-12 

4.1561× 10
-12 

4.4197× 10
-12 

1.3260× 10
-13 

 

4.9390× 10
-14 

 

 

  

Table 2. Numerical results for test problem 2 

 

N  Methods k  CPU  RMSE  

120 

Jacobi 

BGS 

FGS 

BSOR 

 

FSOR 

 

123  

66  

65  

27 

(ω =1.29) 

26 

(ω =1.29) 

0.41 

0.22 

0.22 

0.09 

 

0.09 

 

2.5497× 10
-07 

2.5497× 10
-07 

2.5497× 10
-07 

2.5497× 10
-07 

 

2.5497× 10
-07

 

 

240 

Jacobi 

BGS 

FGS 

BSOR 

 

FSOR 

 

123 

67  

65 

27 

(ω =1.29) 

26 

(ω =1.29) 

1.08 

0.59 

0.57 

0.24 

 

0.23 

 

1.5886× 10
-08 

1.5887× 10
-08 

1.5887× 10
-08 

1.5888× 10
-08 

 

1.5888× 10
-08 

 

480 

Jacobi 

BGS 

FGS 

BSOR 

 

FSOR 

 

124  

67 

66 

27 

(ω =1.29) 

26 

(ω =1.29) 

5.06 

2.73 

2.69 

1.10 

 

1.06 

 

9.8986× 10
-10 

9.9096× 10
-10 

9.9073× 10
-10 

9.9146× 10
-10 

 

9.9141× 10
-10 

 

960 

Jacobi 

BGS 

FGS 

BSOR 

 

FSOR 

 

124 

67 

66 

27 

(ω =1.29) 

26 

(ω =1.29) 

19.16 

10.35 

10.20 

4.17 

 

4.02 

 

6.0241× 10
-11 

6.1381× 10
-11 

6.1140× 10
-11 

6.1897× 10
-11 

 

6.1841× 10
-11 

 

1920 

Jacobi 

BGS 

FGS 

BSOR 

 

FSOR 

 

124 

67 

66 

27 

(ω =1.29) 

26 

(ω =1.29) 

64.28 

34.73 

34.21 

14.00 

 

13.48 

 

2.1580× 10
-12 

3.3197× 10
-12 

3.0747× 10
-12 

3.8407× 10
-12 

 

3.7798× 10
-12 

 

3840 

Jacobi 

BGS 

FGS 

BSOR 

 

FSOR 

 

125 

67 

66 

27 

(ω =1.29) 

26 

(ω =1.29) 

258.00 

138.29 

136.22 

55.73 

 

53.66 

 

1.1161× 10
-12 

3.3317× 10
-13 

5.6647× 10
-13 

2.2100× 10
-13 

 

1.6569× 10
-13 

 

7680 

Jacobi 

BGS 

FGS 

BSOR 

 

FSOR 

 

124 

67 

66 

27 

(ω =1.29) 

26 

(ω =1.29) 

1015.03 

548.44 

540.26 

221.01 

 

212.83 

 

1.7285× 10
-12 

5.5597× 10
-13 

7.9662× 10
-13 

5.2906× 10
-14 

 

1.0232× 10
-13 
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Table 3. Numerical results for test problem 3 

 

N  Methods k  CPU  RMSE  

120 

Jacobi 

BGS 

FGS 

BSOR 

 

FSOR 

 

62 

35 

34 

18 

(ω =1.19) 

18 

(ω =1.18) 

0.07 

0.04 

0.04 

0.02 

 

0.02 

 

1.2835× 10
-03 

1.2835× 10
-03 

1.2835× 10
-03 

1.2835× 10
-03 

 

1.2835× 10
-03

 

 

240 

Jacobi 

BGS 

FGS 

BSOR 

 

FSOR 

 

63 

35 

34 

18 

(ω =1.19) 

18 

(ω =1.19) 

0.29 

0.16 

0.16 

0.08 

 

0.08 

 

1.2796× 10
-03 

1.2796× 10
-03 

1.2796× 10
-03 

1.2796× 10
-03 

 

1.2796× 10
-03 

 

480 

Jacobi 

BGS 

FGS 

BSOR 

 

FSOR 

 

63 

36 

35 

18 

(ω =1.19) 

18 

(ω =1.19) 

0.88 

0.50 

0.49 

0.25 

 

0.25 

 

1.2776× 10
-03 

1.2776× 10
-03 

1.2776× 10
-03 

1.2776× 10
-03 

 

1.2776× 10
-03 

 

960 

Jacobi 

BGS 

FGS 

BSOR 

 

FSOR 

 

63 

36 

35 

18 

(ω =1.19) 

18 

(ω =1.19) 

5.08 

2.90 

2.82 

1.45 

 

1.45 

 

1.2766× 10
-03 

1.2766× 10
-03 

1.2766× 10
-03 

1.2766× 10
-03 

 

1.2766× 10
-03 

 

1920 

Jacobi 

BGS 

FGS 

BSOR 

 

FSOR 

 

63 

36 

35 

18 

(ω =1.19) 

18 

(ω =1.19) 

13.86 

7.92 

7.70 

3.96 

 

3.96 

 

1.2761× 10
-03 

1.2761× 10
-03 

1.2761× 10
-03 

1.2761× 10
-03 

 

1.2761× 10
-03 

 

3840 

Jacobi 

BGS 

FGS 

BSOR 

 

FSOR 

 

63 

36 

35 

18 

(ω =1.19) 

18 

(ω =1.19) 

51.92 

29.67 

28.84 

14.83 

 

14.83 

 

1.2758× 10
-03 

1.2758× 10
-03 

1.2758× 10
-03 

1.2758× 10
-03 

 

1.2758× 10
-03 

 

7680 

Jacobi 

BGS 

FGS 

BSOR 

 

FSOR 

 

63 

36 

35 

18 

(ω =1.19) 

18 

(ω =1.19) 

207.65 

118.66 

115.36 

59.33 

 

59.33 

 

1.2757× 10
-03 

1.2757× 10
-03 

1.2757× 10
-03 

1.2757× 10
-03 

 

1.2757× 10
-03 
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b) 240=N  
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c) 480=N  
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e) 1920=N  
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f) 3840=N  
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g) 7680=N  

 

Fig. 1. a)-g) show the convergence histories for test problem 1 
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a) 120=N  
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b) 240=N  
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c) 480=N  
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d) 960=N  
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e) 1920=N  
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f) 3840=N  

 

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

0 10 20 30 40 50 60 70 80 90 100 110 120 130

L
o
g
 o
f 
It
e
ra
ti
o
n
 E
rr
o
r 
N
o
rm

Iterations

Jacobi

BGS

FGS

BSOR

FSOR
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Fig. 2. a)-g) show the convergence histories for test problem 2 
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a) 120=N  
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b) 240=N  
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c) 480=N  
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d) 960=N  
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e) 1920=N  
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f) 3840=N  
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g) 7680=N  

 

Fig. 3. a)-g) show the convergence histories for test problem 3 
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Percentage gains in term of number of iterations and CPU time 

of BGS, FGS, BSOR and FSOR iterative methods compared 

to the Jacobi method are tabulated in Table 4. 

 

Table 4. Percentage gains of the BGS, FGS, BSOR and FSOR 

methods compared with Jacobi method 

 

 k  

Methods 

Test Problem 

1  

(%) 

Test Problem 

2  

(%) 

Test Problem 

3  

(%) 

BGS 

FGS 

BSOR 

FSOR 

47.46 - 47.58 

48.56 - 48.79 

88.52 - 88.72 

89.18 - 89.41 

45.52 - 46.40 

46.77 - 47.20 

78.04 - 78.40 

78.86 - 79.20 

42.85 - 44.45 

44.44 - 46.04 

70.96 - 71.43 

70.96 - 71.43 

 CPU  

Methods 

Test Problem 

1  

(%) 

Test Problem 

2  

(%) 

Test Problem 

3  

(%) 

BGS 

FGS 

BSOR 

FSOR 

46.98 - 47.62 

48.19 - 48.80 

88.50 - 89.16 

89.15 - 89.44 

45.37 - 46.40 

46.34 - 47.23 

77.77 - 78.40 

78.04 - 79.21 

42.85 - 44.83 

42.85 - 44.83 

71.42 - 72.42 

71.42 - 72.42 

V. CONCLUDING REMARKS 

In the present paper, the performance of five conventional 

first order linear stationary iterative methods i.e. Jacobi, BGS, 

FGS, BSOR and FSOR for the solution of 3-CCNC system 

associated with the numerical solutions of the second kind 

linear Fredholm integral equations has been investigated. From 

the results obtained, it can be observed that FSOR method 

solved the test problems 1 and 2 with least number of 

iterations and lowest CPU time. Meanwhile performance of 

the FSOR method is comparable with BSOR method in 

solving test problem 3. In the aspect of accuracy, numerical 

solutions generated via FSOR method are slightly more precise 

relative to Jacobi, BGS, FGS and BSOR methods for test 

problem 1, as the N  increases. Whereas, accuracy of 

numerical solutions obtained for test problems 2 and 3 are 

comparable for all the tested iterative methods. It also seems 

that the optimal value of relaxation parameter, ω  lies in the 

range of 1 2< <ω  for BSOR and FSOR methods. Overall, the 

FSOR iterative method is an efficient first order linear 

stationary iterative method among the tested methods for 

solving 3-CCNC system. 
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